15,288 research outputs found

    A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

    Full text link
    In this article we consider linear operators satisfying a generalized commutation relation of a type of the Heisenberg-Lie algebra. It is proven that a generalized inequality of the Hardy's uncertainty principle lemma follows. Its applications to time operators and abstract Dirac operators are also investigated

    Color Superconductivity in N=2 Supersymmetric Gauge Theories

    Full text link
    We study vacuum structure of N=2 supersymmetric (SUSY) QCD, based on the gauge group SU(2) with N_f=2 flavors of massive hypermultiplet quarks, in the presence of non-zero baryon chemical potential (\mu). The theory has a classical vacuum preserving baryon number symmetry, when a mass term, which breaks N=2 SUSY but preserves N=1 SUSY, for the adjoint gauge chiral multiplet (m_{ad}) is introduced. By using the exact result of N=2 SUSY QCD, we analyze low energy effective potential at the leading order of perturbation with respect to small SUSY breaking parameters, \mu and m_{ad}. We find that the baryon number is broken as a consequence of the SU(2) strong gauge dynamics, so that color superconductivity dynamically takes place at the non-SUSY vacuum.Comment: 15 pages, 9 figures, a figure and discussions added in Sec. 4, version to appear in Phys. Rev.

    Meta-stable Vacuum in Spontaneously Broken N=2 Supersymmetric Gauge Theory

    Full text link
    We consider an N=2 supersymmetric SU(2) \times U(1) gauge theory with N_f=2 massless flavors and a Fayet-Iliopoulos (FI) term. In the presence of the FI term, supersymmetry is spontaneously broken at tree level (on the Coulomb branch), leaving a pseudo-flat direction in the classical potential. This vacuum degeneracy is removed once quantum corrections are taken into account. Due to the SU(2) gauge dynamics, the effective potential exhibits a local minimum at the dyon point, where not only supersymmetry but also U(1)_R symmetry is broken, while a supersymmetric vacuum would be realized toward infinity with the runaway behavior of the potential. This local minimum is found to be parametrically long-lived. Interestingly, from a phenomenological point of view, in this meta-stable vacuum the massive hypermultiplets inherent in the theory play the role of the messenger fields in the gauge mediation scenario, when the Standard Model gauge group is embedded into their flavor symmetry.Comment: 27 pages, 11 figures, journal reference added, minor modifications in the tex

    Field evolution of the magnetic structures in Er2_2Ti2_2O7_7 through the critical point

    Full text link
    We have measured neutron diffraction patterns in a single crystal sample of the pyrochlore compound Er2_2Ti2_2O7_7 in the antiferromagnetic phase (T=0.3\,K), as a function of the magnetic field, up to 6\,T, applied along the [110] direction. We determine all the characteristics of the magnetic structure throughout the quantum critical point at HcH_c=2\,T. As a main result, all Er moments align along the field at HcH_c and their values reach a minimum. Using a four-sublattice self-consistent calculation, we show that the evolution of the magnetic structure and the value of the critical field are rather well reproduced using the same anisotropic exchange tensor as that accounting for the local paramagnetic susceptibility. In contrast, an isotropic exchange tensor does not match the moment variations through the critical point. The model also accounts semi-quantitatively for other experimental data previously measured, such as the field dependence of the heat capacity, energy of the dispersionless inelastic modes and transition temperature.Comment: 7 pages; 8 figure

    Massive Hyper-Kahler Sigma Models and BPS Domain Walls

    Full text link
    With the non-Abelian Hyper-Kahler quotient by U(M) and SU(M) gauge groups, we give the massive Hyper-Kahler sigma models that are not toric in the N=1 superfield formalism. The U(M) quotient gives N!/[M! (N-M)!] (N is a number of flavors) discrete vacua that may allow various types of domain walls, whereas the SU(M) quotient gives no discrete vacua. We derive BPS domain wall solution in the case of N=2 and M=1 in the U(M) quotient model.Comment: 16 pages, 1 figure, contribution to the Proceedings of the International Conference on "Symmetry Methods in Physics (SYM-PHYS10)" held at Yerevan, Armenia, 13-19 Aug. 200

    Matrix representation of the time operator

    Full text link
    In quantum mechanics the time operator Θ\Theta satisfies the commutation relation [Θ,H]=i[\Theta,H]=i, and thus it may be thought of as being canonically conjugate to the Hamiltonian HH. The time operator associated with a given Hamiltonian HH is not unique because one can replace Θ\Theta by Θ+Θhom\Theta+ \Theta_{\rm hom}, where Θhom\Theta_{\rm hom} satisfies the homogeneous condition [Θhom,H]=0[\Theta_{\rm hom},H]=0. To study this nonuniqueness the matrix elements of Θ\Theta for the harmonic-oscillator Hamiltonian are calculated in the eigenstate basis. This calculation requires the summation of divergent series, and the summation is accomplished by using zeta-summation techniques. It is shown that by including appropriate homogeneous contributions, the matrix elements of Θ\Theta simplify dramatically. However, it is still not clear whether there is an optimally simple representation of the time operator.Comment: 13 pages, 3 figure

    On the Spectral Analysis of Quantum Electrodynamics with Spatial Cutoffs. I

    Full text link
    In this paper, we consider the spectrum of a model in quantum electrodynamics with a spatial cutoff. It is proven that (1) the Hamiltonian is self-adjoint; (2) under the infrared regularity condition, the Hamiltonian has a unique ground state for sufficiently small values of coupling constants. The spectral scattering theory is studied as well and it is shown that asymptotic fields exist and the spectral gap is closed

    Femtosecond laser nanostructuring of transparent materials: from bulk to fiber lasers

    No full text
    Progress in high power ultra-short pulse lasers has opened new frontiers in the physics of light-matter interactions and laser material processing. Recently there has been considerable interest in the application of femtosecond lasers to writing inside transparent materials and in particular to fabrication of three-dimensional microstructures
    • …
    corecore